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Methane mitigation solutions evaluation

TABLE 1
Methane mitigation solutions evaluation
EDF and Ceres do not endorse specific solutions or the research associated with each solution. Companies should evaluate solutions before adoption, as their applicability can vary widely 
depending on each company’s unique supply chain.

This table is part of the Dairy Methane Action Plan guide. Please refer to the full guide for additional context and details, including definitions  
of solutions and their rankings.

INTERVENTIONS AND SOLUTIONS FARM CHARACTERISTICS SOLUTION CHARACTERISTICS

Intervention 
pathway

Mitigation  
solution

Regional 
regulatory 

applicability

Climate 
applicability

Farm type 
applicability  

Farm size 
applicability

Implementation 
stage

Solution 
readiness 

Implementation 
burden Cost range Cost type GHG reduction 

potential 
Technology 

level

Alignment 
with existing 
protocols/
standards 

Level of 
MMRV 

required

Enteric 
reductions

3-NOP  
(e.g., Bovaer®)

Commercially 
available 

and  
approved 

for intended 
use of 

methane 
reduction1, a

All Favors 
intensiveb All Commercial 

solution High Low/med Med/high2 OpEx Med/high3, 4, 5 Low Med Med

Enteric 
reductions

Asparagopsis 
sp.c (e.g., 

Brominata®, 
Methane 
Tamer™, 

SeaFeed™, 
SeaGraze®, 

SeaStock) (O)

Commercially 
available 
in Europe, 
Australiad 

All Favors 
intensiveb All

Commercial 
solution/
research/
advocacy 

depending 
on region

Low/med Low/med Med/high6 OpEx Highe, 7, 8 Low Med Med/
high

Enteric 
reductions

Breeding/genetics 
improvements for 
CH4 (e.g., Semex®)  

(O)

All All All All

Research/
limited 

commercial 
solution

Med Low Unknown/
low OpEx Medg, 9, 10 Med Med Med

Enteric 
reductions

Diet optimization 
(O) All All All All Commercial 

solution High Low Low OpEx Low22 Low Med Med

Enteric 
reductions

Essential oils 
(e.g., Agolin®, 

Mootral  
Enterix™) (O)

Commercially 
available 
in North 
America,  
Europe, 
Asia11

All Favors 
intensiveb All Commercial 

solution High Low/med Low12 OpEx Low13 Low Med Med

Enteric 
reductions

Feed storage/
quality (O) All Warmh All All Commercial 

solution High Med Med Both Low14, 15 Low Med Med

Enteric 
reductions

Lipid  
supplementation  

(O)
All All Favors 

intensiveb All Commercial 
solution High Low/med Low OpEx Low16 Low Med Med
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INTERVENTIONS AND SOLUTIONS FARM CHARACTERISTICS SOLUTION CHARACTERISTICS

Intervention 
pathway

Mitigation  
solution

Regional 
regulatory 

applicability

Climate 
applicability

Farm type 
applicability  

Farm size 
applicability

Implementation 
stage

Solution 
readiness 

Implementation 
burden Cost range Cost type GHG reduction 

potential 
Technology 

level

Alignment 
with existing 
protocols/
standards 

Level of 
MMRV 

required

Enteric 
reductions

Methane capture 
headpiece  
(e.g., ZELP)

Limited 
(piloting in 

Europe) 
All All All Research Low Med Med17 Both High18 High High Low

Enteric 
reductions

Methane 
vaccines  

(e.g., ArkeaBio™, 
Lucidome Bio) (O) 

None All All All Research/
advocacy Low Low Unknown OpEx

Unknown 
(likely low/

med)19
Unknown Unknown Unknown

Manure 
management

Anaerobic 
digestersi, j (O) All Warmh Intensive Large Commercial 

solution High High High Both High20, 21 High High High

Manure 
management Compostingi (O) All Warmh

All (favors 
smallholders 
and intensive 

dry lot)

All (favors 
small/
med)

Commercial 
solution High Med/high Low OpEx High22 Low High Med

Manure 
management Daily spread (O) All Warm/

temperate

All (favors 
intensive dry 

lot)

Small/
med

Commercial 
solution High Low/med Med Both High37 Low High Low

Manure 
management

Manure additive: 
Acidification (O*) All Warmh All All

Commercial 
solution/
research

Low/med Low Low42 OpEx High23,24 Low/med Low/med Med/
high

Manure 
management

Manure cover 
and flare 

systems (O)
All Warmh Intensive Med/large Commercial 

solution High Low High25 Both Med/high26 High Med Med

Manure 
management

Manure  
operational  

improvements (O)
All Warmh All All Commercial 

solution High Low/med Low OpEx Varies Low Low/med Med

Manure 
management

Manure 
separatorsi (O) All Warmh Intensive Med/large Commercial 

solution High Med Med Both Med/high27, 

28, 29 Med/high Med Med

Manure 
management N2 Applied (O)

Commercially 
available in 

Europe
Warmh Intensive Med/large

Commercial 
solution/
research

Med Med High Both High30 High Med Med

Manure 
management

Pasture-based 
management (O) All Warmh Pastoral or 

smallholder All Commercial 
solution High High Med OpEx Med2, k Low Med High

Productivity 
optimization

Activity trackers 
(O) All All All

All (tech 
solutions 

favor med/
large)

Commercial 
solution High Med Med31 Both Varies32,33 Varies High Low

Productivity 
optimization

Animal health 
improvements All All All All Commercial 

solution High Low Low OpEx Varies34 Low High Low

Productivity 
optimization

Breeding/ 
genetics  

improvements  
for yield (O)

All All All All Commercial 
solution High Low Low35 OpEx Varies36 Low High Low



INTERVENTIONS AND SOLUTIONS FARM CHARACTERISTICS SOLUTION CHARACTERISTICS

Intervention 
pathway

Mitigation  
solution

Regional 
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Farm size 
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Solution 
readiness 

Implementation 
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potential 
Technology 

level

Alignment 
with existing 
protocols/
standards 

Level of 
MMRV 

required

Productivity 
optimization

Herd  
management/

stocking density 
(O)

All All All All Commercial 
solution High Low Low OpEx High37 Low High Low

Productivity 
optimization

Herd  
management/

young stock  
optimization (O)

All All All All Commercial 
solution High Low Low OpEx Low/med38 Low High Low

Productivity 
optimization

Robotic milking 
(O) All All Intensive or 

pastoral Med/large Commercial 
solution High High High39 CapEx High40,41 High High Low

 

(O) Indicates the solution can be used in certified organic farming systems

(O*) Organic acids (e.g., citric acid, acetic acid) can be used in organic farming systems. Further research is needed to determine if using sulfuric acid would violate organic standards and what (if any) long-term effects might exist 
from continued application of sulfur-treated manure on soil and forage.

Table 3 Footnotes:  

a  After safety and efficacy review, Elanco has received FDA permission to market 3-NOP for this intended use in the United States.

b  More easily adopted in intensive or non-pastoral smallholder systems, as it is easier to continuously supplement and control feed. This solution can still be applied in pastoral systems but with more difficulty.

c  Further research is needed to better understand the impact that feeding Asparagopsis sp. has on animal health and the toxicological risks associated with bromoform residues in milk.

d  In North America, various federal regulations make transit problematic to transport milk across state lines without approval from the FDA. The use of Asparagopsis sp. is allowed within states with the submission of an 
uncontested GRAS application.

e  The range of reductions is generally based on dosage. Planned dosage levels demonstrate reductions of around 60%, which categorizes this solution as having a high GHG reduction potential.

f  While the cost of Rumensin is currently low, the manufacturer is attempting to monetize the carbon savings which could drive up the price.

g  The methane reduction potential estimates are over 25-30 years, so considerably less over the near term of a 2030 or 2035 corporate goal.

h  This solution is applicable to all climates but is most impactful in warm climates.

i  This solution includes multiple solution technologies which may have varying methane reduction potentials.

j  A critical design and maintenance consideration for anaerobic digesters is ensuring they remain airtight throughout their lifetime operation. Even a small leak in the methane path to the generator or pipeline can release methane 
directly into the atmosphere and negate much of the digester’s reduction potential.

k  Pasture-based systems can impact all intervention pathways. Manure methane is expected to decrease, while enteric emissions may increase or decrease depending on forage quality. Further, depending on how well the grazing 
is managed, carbon can either be sequestered or released from the soil.
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