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Methodology Summary 

Climate impacts on credit risk in agriculture: A tool for agricultural 
lenders to assess projected risks from a changing climate  
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1. Methodology overview 

Climate change poses business risks to farmers and lenders through warmer seasons, 
shifting rainfall patterns, and extreme heat. Agricultural lenders can help manage these 
risks by supporting investments in adaptation strategies such as transitioning to more 
climate-resilient crops and improving soil health. 

The goal of this project was to help agricultural lending institutions (also referred to as ag 
lenders) in the U.S. Midwest and Canadian Prairies assess physical climate-related risks to 
their portfolio of row crop farming customers and compare the impacts of one potential 
climate change adaptation measure: alternative crop rotations. This assessment was 
completed by projecting changes in crop yields using the results of a trusted climate 
change model and biophysical crop models that predict crop yields from changes in 
weather or management. We then applied the changes in crop yields to crop budgets, 
whole farm budgets and credit risk metrics to model the financial and credit risk impacts 
from projected changes in the climate. Figure 1 below outlines these modelling steps. The 
results of the project will help agricultural lenders assess individual and portfolio-level 
risks from climate change and inform their strategies to support farmer customers in 
making investments that help them adapt to climate change.   

Figure 1: Outline of our modelling approach 

 

 

We’ve divided this paper into sections describing the climate, crop production and 
financial analysis datasets and methods used, with examples that should help readers 
understand the inputs to the web tool and the full dataset. 

https://agcreditrisk.edf.org/
https://agcreditrisk.edf.org/
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2. Climate modelling 

According to the United Nations, climate change refers to the long-term shifts in 
temperature and weather patterns. Decades of scientific research have concluded that 
human activities that are emitting Greenhouse Gas Emissions (GHGs) into the atmosphere 
are causing the climate to change since the accumulation of GHGs in the atmosphere 
traps heat that would otherwise have left our atmosphere. This accumulation of GHGs in 
the atmosphere affects the temperature of our atmosphere, ocean water, and alters many 
biophysical systems on the planet. Climate change models use the best available earth 
and atmospheric science to project how changes in GHG concentrations in the 
atmosphere will change the climate and weather in the future. In the case of agriculture, 
climate model results can be applied to crop yield models to evaluate how changes in 
projected future climate conditions will affect crop yields. The CESM2 model described 
below generated the foundational climate change inputs that we used to evaluate climate 
change impacts on crop production and farm financial and credit risk performance.  

Our modelling approach spans 2024-2050. 2050 was selected as the end of the time 
horizon since the project’s agricultural finance institution advisors specified that later 
projections are less relevant to their business model and farmer relationships. 

2.1 The CESM2 model 

We used the CESM2 climate change model to project the climate and weather conditions 
through 2050. CESM2 is the newest iteration of the Community Earth System Model 
(CESM), an open‐source, comprehensive model used in simulations of the Earth’s 
historical, present, and future climates. It works at a 1-degree spatial resolution and 
covers the period 1850-2100 under CMIP6 historical and SSP3-7.0 future radiative forcing 
scenarios. The SSP3-7.0 scenario assumes a world that increases in nationalism and 

Maladaptation risk 

It is important to avoid maladaptation when considering strategies to adapt to climate 
change. Maladaptation occurs when actions to adapt to changing conditions in the 
short-term backfire and make things worse in the long-term, such as temporary 
adaptive measures that could unintentionally increase farmers’ vulnerability to 
additional climate risks in the future. For example, increasing groundwater 
consumption in a water-limited region to compensate for variable rainfall can 
accelerate the depletion of water resources and make farming of any kind more difficult 
in the long-run. Evaluating potential climate-related risks and identifying adaptation 
solutions will help agricultural lenders mitigate these risks and support their farmer 
customers' long-term success. 

https://www.un.org/en/climatechange/what-is-climate-change
https://www.cesm.ucar.edu/models/cesm2
https://pcmdi.llnl.gov/CMIP6/
https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained/
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regional economic conflict that prevents comprehensive climate action.1 This scenario is 
meant to be a “middle of the road” scenario between the worst case and more optimistic 
scenarios. As Danabasoglu et al., (2020) detail, CESM2 uses a combination of different 
oceanic and atmospheric initial states than those in CESM1, creating ensemble spreads 
that have several new technical and scientific capabilities; including a more realistic 
representation of Greenland’s ice sheet, improved representation of clouds and rain, and 
the addition of wind‐driven waves on the model’s ocean surface, among others. Outputs of 
the CESM models are widely used in climate and land use research, including the CMIP6 
model intercomparison project. 

2.2 How we used the CESM2 data 

For our research, we used 50 members (referred to as SMBB) of the Large Ensemble 
(LENS2) CESM2 Community Project. Model ensembles allow researchers to combine 
different models — or in this case, forms of the CESM2 model — to assess the certainty in 
model projections of future climate. The 50-member SMBB we used here combines 
different oceanic and atmospheric initial states to create an ensemble. While the CESM2 
model provides simulations for the 2016-2100 period, we kept the observations through 
2050 to match the overall project’s time horizon of interest.  

Each CESM-LENS2 member provides bias-corrected observations for daily precipitation 
(mm), solar radiation (MJ/m²-day), maximum and minimum temperatures (°C) at the native 
resolution of 1°. For an example of peer-reviewed work using this approach for crop 
modeling studies, see Glotter and Elliott (2016).  

3. Crop yield modelling 

The primary impact of climate change on farm financial performance is through weather 
impacts on crop production. Changes in temperatures, precipitation, growing season 
length and many other environmental variables affect how well crops grow and the final 
crop yield of a farm. We modelled the impacts of climate change on future crop yields 
using two scenarios. The first scenario, called “current system”, uses the Decision Support 
System for Agrotechnology Transfer (DSSAT) model to simulate crop yields under future 
climate conditions for corn, soybean, sorghum, canola, spring wheat and pea crops grown 
under typical current management practices and technologies (including seed varieties). 
The “current system” scenario is used as the basic scenario throughout the web tool. The 
second scenario, called “current system plus historical yield trend”, utilized official 
historical crop yield data from the regions of interest to generate a scenario where 
projected future yields under the “current system” were adjusted for recent (2014-2023) 
yield trends. The objective of the “current system” scenario was to help assess how 

 
1 Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar; Edmonds, Jae; O’Neill, Brian C.; Fujimori, Shinichiro; 
Bauer, Nico; Calvin, Katherine; Dellink, Rob; Fricko, Oliver; Lutz, Wolfgang (2017-01-01). "The Shared 
Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An 
overview". Global Environmental Change. 42: 153–168. 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001916
https://www.cesm.ucar.edu/community-projects/lens2
https://climate.copernicus.eu/sites/default/files/2021-01/infosheet6.pdf
https://climate.copernicus.eu/sites/default/files/2021-01/infosheet6.pdf
https://journals.ametsoc.org/view/journals/apme/55/3/jamc-d-15-0120.1.xml
https://dssat.net/
https://doi.org/10.1016%2Fj.gloenvcha.2016.05.009
https://doi.org/10.1016%2Fj.gloenvcha.2016.05.009
https://doi.org/10.1016%2Fj.gloenvcha.2016.05.009
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current systems will perform given expected changes to climate, while the “current system 
plus historical yield trend” scenario aims to incorporate recent yield increase rates, where 
they are detected, to the simulations of the “current system” to create a future scenario 
where current rates are sustained through 2050. A more detailed description of each 
approach is provided below. 

The crop yield step of our model generates a mean yield for each permutation of 
county/census division, crop, and year for both yield scenarios. These yields are also 
averaged across the 50 ensembles, or iterations, of the CESM LENS2 model for each 
permutation. While this averaging is important to represent the 50 iterations of the model, 
it smooths out the projections. In reality, yields will likely vary significantly between years 
(as it has in the past) while following the trend that the averaged results demonstrate. 

 Given the additional complexities in modeling and quantifying the economics of irrigation 
over large areas for several crops, simulations were only generated for rainfed crops. 

3.1 Simulating current cropping systems with DSSAT 

Biophysical crop simulation models are quantitative representations of how a crop grows 
when exposed to environmental and management conditions, using insights from 
agronomy and plant physiology. DSSAT simulates the growth and development of a crop as 
it responds to specific management practices and to the changes in weather, soil, water, 
carbon, and nitrogen that take place under the cropping system over time (Jones et al., 
2003). In use since the 1980’s, DSSAT is one of the most widely used crop models, able to 
simulate over 42 crops. DSSAT has been used for a wide range of topics from impacts of 
changing single-genes on crop performance, to on-farm precision management and in 
regional assessments of impacts of climate change on agriculture (for more see here). 

We used the parallel System for Integrating Impacts Models and Sectors (pSIMS) 
framework to apply the CESM-LENS2 climate model outputs to the DSSAT biophysical crop 
model. The pSIMS framework allows for efficient implementation of large-scale 
assessments of climate vulnerabilities, impacts, and adaptations across multiple sectors 
and at unprecedented scales (Elliott et al., 2014). The pSIMS framework has been used 
extensively with DSSAT (named pDSSAT in the literature) to study climate change and 
global food security, for crops such as corn, wheat, rice and soybean (e.g.  Jagermeyr et al., 
2020). 

3.2 DSSAT inputs and parameters 

The following inputs were used to simulate the production of the selected crops (corn, 
soybeans, sorghum, canola, spring wheat and peas): 

• Climate data: CESM LENS2 data described in the Climate Data Modelling section was 
applied to the DSSAT model to evaluate crop production under future climate and weather 
conditions. 

https://www.sciencedirect.com/science/article/abs/pii/S1161030102001077?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S1161030102001077?via%3Dihub
https://scholar.google.com/scholar?start=0&hl=en&as_sdt=2005&sciodt=0,5&cites=16574369989896309828&scipsc=
https://www.sciencedirect.com/science/article/abs/pii/S1364815214001121
https://www.nature.com/articles/s43016-021-00400-y
https://www.nature.com/articles/s43016-021-00400-y
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• Soil data: the Global Soil Dataset for use in Earth System Models (GSDE) provides soil 
information such as soil particle-size distribution, organic carbon, and nutrients. It 
provides quality control information in terms of confidence level at a 30’’ grid for eight 
vertical layers to a depth of 7.5 ft (2.3 m). The GSDE is based on the Soil Map of the World 
and various regional and national soil databases, including soil attribute data and soil 
maps (Shangguan et al., 2014). 

• Crop inputs: Sowing dates and densities, nitrogen fertilization levels, and cultivars 
simulated in the DSSAT model were derived from a range of sources including extension 
and trade publications, and peer-reviewed modeling studies (full list available upon 
request). Overall, sowing dates were chosen to reflect the ranges of sowing dates and 
densities for each crop in their respective region, while N-fertilization was set to cover 
usual ranges used under non-limiting conditions.  

 

3.3 Crop yield scenarios 

For all crops in the study, reported yield data from recent history (2000-2023) were used to 
ensure that simulations were capturing yield dynamics correctly. County-level USDA 
National Agricultural Statistics Service (USDA-NASS) accessed via the tidyUSDA R package 
were used for corn, soybean and sorghum. StatsCan Small Area Data Region yields were 
used for Canadian canola, spring wheat and pea yields at the level of  Census Divisions. All 
yield data was represented in bushels per acre, using 56 lb (corn, sorghum) or 60 lb bushel 
weights (soybean, canola, wheat, peas). 

The “current system plus historical yield trend” scenario was created by extracting linear 
trends from recent historical yield time series in each crop and area (U.S. county and 
Canadian Census Division). We used the following algorithm to extract trends: fit a simple 
linear regression to each geography (counties in the US or small area data regions in 
Canada) that had at least 8 years of yield data, with observed official yields as the 
response variable and year as the explanatory variable. If the year coefficient was 
significant at the P < 0.1 level, the yearly bushel per acre increase expected with each year 
was added to the DSSAT simulated “current system” scenario yields in each year through 
2050, to estimate the impact of observing the current yield improvement trends through 
the study horizon. In cases where yield data was absent, or a negative or non-significant 
yield trend was detected, no yearly increase was added to the DSSAT simulation results. 
Figure 2 below shows the historical yield data, “current system” scenario results, and 
“current system plus historical trend” scenario results for three Nebraska counties. 

 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013MS000293
https://www.nass.usda.gov/Quick_Stats/index.php
https://bradlindblad.github.io/tidyUSDA/
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210000201
https://open.canada.ca/data/en/dataset/65f1cde1-95e0-4a1d-9a1a-c45b2f83a351
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4. Farm financial and credit risk modelling 

The impacts of changing climate and weather conditions on crop yields described in the 
previous section ultimately affect a farm’s revenue, net returns and over time can impact 
their credit risk. The final stage of our modelling projects the financial and credit risk 
performance of farms based on the projected changes in crop yields through 2050. It is 
critical to understand that costs of crop production, net returns, and farm-level financial 
factors, such as income sources and land tenure, vary widely among producers and 
regions, making it impossible to effectively model every permutation of farm 
characteristics and financial performance. These factors are also estimated differently by 
government agencies and non-government researchers, which adds to the difficulty in 
conducting broad-scale economic analyses of this sort. Given these caveats, we sought to 
use the most complete, well-documented, consistent and granular sets of public data to 
evaluate the impacts of climate change on farm financial and credit risk performance. The 
sources and approaches used are described in the subsections below. We used U.S. 
county-level data when possible and Census Division (or equivalent) level in Canada. 

4.1 Overall approach to financial and credit risk modelling 

We modelled the financial and credit risk performance of farms under changing climate 
and crop yield outcomes by generating farm economic scenarios and crop rotation 
scenarios that were applied to artificially created “farms” with different locations, farm 
sizes, and current day credit risk. Projected farm financial performance and credit risk 
results were generated for each combination of scenarios and farm characteristics. 

Figure 2: Examples of yield scenarios 
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Farm financial performance was evaluated through total farm revenue and total farm net 
returns. Debt-to-asset ratio was used as a proxy measure of credit risk. It is one of the 
metrics used in agricultural lending institutions’ risk models. 

We began by generating crop enterprise budgets for each crop and region (described 
further in section 4.2) using publicly available information on costs of production and crop 
prices received. These crop enterprise budgets played the role of translating changes in 
crop yield into per acre changes in gross revenue and net returns. 

We then generated coarse categories of farm size in each state and province, based on 
recent data from the US Midwest and Canadian Prairies. The goal was to generate acreage 
ranges in each area of interest that reflect recent trends in average farm size. The farm 
sizes were used to turn per acre gross revenue and net return figures to total farm gross 
revenue and net returns.  

The total farm financial outcomes were modelled for the conventional rotations including a 
50/50 corn-soybeans acreage split in the U.S. states and 50/50 canola-wheat acreage split 
in Canadian provinces. They were also modelled for the climate adaptation rotations 
including a 25/50/25 corn-soybean-sorghum acreage split in the U.S. states and an equal 
canola-wheat-pea acreage split in Canadian provinces. 

The final step to turn farm financial performance into credit risk metrics included 
generating farm balance sheets that could be stressed by annual total farm net returns. 
We used publicly available farm financial balance sheet data to generate low-, medium-, 
and high-credit risk farm categories for each state and province. Total farm net return 
results from the previous step were added to the assets on the farm balance sheet while 
debt was held constant. Debt-to-asset ratio, an important credit risk metric for agricultural 
lending institutions, was derived from the farm balance sheet and adjusted as net returns 
change the total assets of the farm. The changes in debt-to-asset ratio were derived for 
each starting credit risk profile, farm size, crop rotation, county, and economic scenario 
combination. The following sections describe the data inputs, assumptions and 
methodology in further detail. 

4.2 Cost of production, prices received and balance sheet data. 

For the U.S., crop cost of production and returns data were obtained from the USDA’s 
Economic Research Service, which provides detailed data by Farm Resource Regions 
(Figure 3).  

https://www.nass.usda.gov/Publications/Todays_Reports/reports/fnlo0222.pdf
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210015601
https://www.ers.usda.gov/data-products/commodity-costs-and-returns
https://www.ers.usda.gov/data-products/commodity-costs-and-returns
https://ers.usda.gov/sites/default/files/_laserfiche/publications/42298/32489_aib-760_002.pdf?v=82825
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Counties across Iowa, Nebraska and South Dakota span the Heartland, Prairie Gateway 
and Northern Great Plains ERS Farm Resource Regions. While significant variability exists 
within Farm Resource Regions, the cost of production was consistent with other similar, 
more detailed sources, such as the University of Nebraska Extension. To provide more 
granularity, land-rent and tenure costs from ERS budgets were adjusted using county-level 
rental costs obtained from USDA National Agricultural Statistics Service (USDA-NASS). 
Using the ERS “opportunity cost of land” variable as a baseline, we estimated county-level 
deviations from the ERS-defined land cost. Average rental rates within each state and ERS 
region were calculated using the USDA-NASS cropland rental rates. The county-level 
deviations from these calculated averages were then applied to the ERS baseline for each 
region and state. USDA-NASS data was also used to provide state-level average yearly 
prices received.  

Figure 4 shows key metrics from the ERS dataset for the ERS regions of interest, including 
the opportunity cost of land, total costs listed and commodity price for corn. The value of 
production less total costs listed is also presented, illustrating that in most years the value 
received for corn production is less than the total costs.  

Figure 3: USDA Farm Resource Regions for ERS data  

Source: Farm Resource Regions 

https://cropwatch.unl.edu/2024/2025-nebraska-crop-budgets-available-now/
https://www.nass.usda.gov/Quick_Stats/index.php
https://ers.usda.gov/sites/default/files/_laserfiche/publications/42298/32489_aib-760_002.pdf?v=82825
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Farm-level balance sheet data was obtained from the University of Minnesota’s FINBIN 
database, which provides financial benchmark data for producers and researchers from 
real farms. From this resource, we were able to query total asset, debt and debt-to-asset 
ratios of the 20th, 50th, and 70th percentiles of producers reporting in the states of 
interest, for different farm sizes. These percentiles were chosen to represent low, medium, 
and high starting credit risk profiles for the example farms. Users of the web tool can 
download the dataset and update these inputs based on their own criteria. The table below 
has the final values used for Nebraska, as a sample. 

 

Table 1: Sample balance sheet figures for Nebraska 

state farm size 
(category) 

area 
(ac) 

risk_profile 
 

total_assets 
(USD) 

total_debt 
(USD) 

debt-to-asset ratio 
 

Nebraska sizeSmall 1000 riskHigh 1,291,253 710,189 0.55 
   

riskLow 4,188,128 586,338 0.14 
   

riskMedium 3,084,599 740,304 0.24 
 

sizeMedium 2000 riskHigh 3,020,921 1,691,716 0.56 
   

riskLow 6,548,113 1,440,585 0.22 
   

riskMedium 5,741,173 1,607,528 0.28 
 

sizeLarge 4000 riskHigh 5,260,686 2,156,881 0.41 
   

riskLow 12,658,693 1,898,804 0.15 
      riskMedium 9,934,260 1,986,852 0.20 

Figure 4: ERS region key corn cost and price data 

https://finbin.umn.edu/Home/AboutFinbin
https://finbin.umn.edu/Home/AboutFinbin
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In Canada, crop cost of production was obtained from the Saskatchewan Government’s 
Crop Planning Guide and Crop Planner (see sample of that date in Figure 5 below). Besides 
being a single, consistent data set that held data for all crops of interest, it provided crop 
budgets for the three major Canadian Prairie Soil Types (Brown, Dark Brown and Black) 
(Figure 6 below).  

 

Source: Awada, Nagy and Williams (2021)  

Figure 6: Canadian soil type map 

Source: Canadian Prairie Soil Types 

Figure 5: Key canola prices and production costs by soil type 

Source: Saskatchewan Government’s Crop Planning Guide and Crop Planner 

https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/farm-business-management/crop-planning-guide-and-crop-planner
https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/farm-business-management/crop-planning-guide-and-crop-planner
https://open.canada.ca/data/en/dataset/ac6a1e51-9c70-43ab-889f-106838410473
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260946
https://open.canada.ca/data/en/dataset/ac6a1e51-9c70-43ab-889f-106838410473
https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/farm-business-management/crop-planning-guide-and-crop-planner
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We took the prices from the Saskatchewan Crop Planning guide and Crop Planner to 
represent those of the soil types in Alberta since these soil types dominate agricultural 
areas of the remaining Prairie provinces. In a few minor areas, soils classified as Gray 
within our Census Divisions of interest were applied the budgets for the Black soil types, 
which are adjacent to the Gray soil types in each Province. Crop prices received data was 
obtained from StatsCan. 

Farm-level balance sheet data for Canada was obtained from StatsCan’s Farm financial 
survey. We used the average values reported in the Farm financial survey, and inputs from 
experts to set limits that matched reasonable risk categories to generate similar risk 
scenarios to those generated for the U.S. The table below shows the final values used for 
Saskatchewan as an example. A full table with values for all provinces is available for 
download.  

 

Table 2: Sample balance sheet variables in Saskatchewan 

province farm size 
(category) 

area 
(ac) 

risk_profile 
 

total_assets 
(CAD) 

total_debt 
(CAD) 

debt-to-asset ratio 
 

Saskatchewan sizeSmall 700 riskLow  1,931,672  328,881 0.17 
   riskMedium 1,931,672  822,204 0.43 

   riskHigh 1,931,672  1,052,421  0.54 

 sizeMedium 1400 riskLow 3,863,344  657,763  0.17 

   riskMedium 3,863,344  1,644,407  0.43 

   riskHigh 3,863,344  2,104,841  0.54 

 sizeLarge 2800 riskLow 7,726,688  1,315,526  0.17 

   riskMedium 7,726,688  3,288,814  0.43 

   riskHigh 7,726,688 4,209,682  0.54 

  

All cost of production, budgets and financial figures used were corrected for inflation, set 
to 2023 values for both USD and CAN. 

4.3 Farm profitability scenarios. 

Large between-year, and between-farmer variability exists in enterprise and farm-level 
costs, as well as in prices received and in access to government support. Consequently, 

https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/farm-business-management/crop-planning-guide-and-crop-planner
https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=3210007701
https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=3210010201
https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=3210010201
https://www.bls.gov/cpi/data.htm
https://www.statcan.gc.ca/en/subjects-start/prices_and_price_indexes/consumer_price_indexes
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setting single cost, price received, and government economic support levels is 
challenging. Using the cost and price received sources described above, we first adjusted 
all costs and prices for inflation to reflect 2023 dollars. We then obtained the 20th, 50th 
(median) and 70th percentiles of the distributions of the costs and prices since 2013, and 
combined them to create the following profitability scenarios: medium profitability, which 
combined the cost and price medians, representing our “average scenario”. The low 
profitability scenario combined high costs of production (70th percentile), and low prices 
received (20th percentile), while the high profitability scenario combined low costs of 
production (20th percentile) with high prices received (70th percentile). We generated an 
additional “realistic future” scenario for the U.S. that applies the University of Missouri’s 
Food and Agriculture Policy Research Institute’s (FAPRI) 2024 U.S. Agricultural Market 
Outlook Report economic scenario. The report provides median expected changes in crop 
variable costs of production and prices received through the 2033-2034 season. We 
included FAPRI’s projections to represent a dynamic economic projection that represents 
an agricultural economy with changing costs and prices over time. This differs from our 
other scenarios that keep costs of production and crop prices static over time. To 
incorporate expected median changes in costs and commodity prices, we calculated the 
yearly percent change in each variable compared to the 2023 baseline provided, and 
applied it to our own variable costs and prices received through 2034. For the period 
between 2035 and 2050, the values were kept at 2034 levels. Figure 7 below presents a 
sample of the data for corn. 

 

The web tool is built around the medium profitability scenario, but data for the remaining 
scenarios is available to download. Table 3 below shows the high, medium, and low 
profitability scenarios for US corn. Profitability scenarios for all other crops are also 
available for download.  

Figure 5: Costs of production and prices received for U.S. corn according to FAPRI 2024 
projections 

https://fapri.missouri.edu/publications/2024-us-agricultural-market-outlook/
https://fapri.missouri.edu/publications/2024-us-agricultural-market-outlook/
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Table 3: Profitability scenarios for US corn 

 

4.4 Critical assumptions. 

As described before in section 4.3 for costs of production and crop prices, to generalize 
our work across varied geographies and cropping systems, our team made a series of 
assumptions to perform the farm-level financial modeling.  

Crops farmed: In each area of interest, we modeled the predominant row-crop systems 
currently in use, namely corn-soybean in the U.S. Midwest, and canola-wheat in the 
Canadian Prairies. We also included an additional crop in each region that could provide 
production and financial resilience under future climate conditions, based on existing 
literature: grain sorghum in the U.S. and field pea in Canada. While many other crops could 
have been chosen as an alternative additional crop to include in typical rotations, the 
crops chosen met two key criteria deemed important: they are already grown in each 
region of interest, which means there are already well developed management and 
technological practices developed for their production, and the necessary agronomic and 
economic data necessary for us to incorporate them in the study exists. They are also 
crops that work well together, creating benefits for the soils and main cash crops grown in 
the regions already. For an example for pea benefits in Canada, see Gill (2018), and for 
sorghum in the U.S., see Sindelar et al. (2016). 

Land rent costs: We followed the approach taken by the ERS to generate the Commodity 
and Returns dataset used, which sets land values in cost-of-production accounts at its 
rental value. This represents either the actual rent paid by producers who lease land or the 
opportunity cost for those who own it.  Using the opportunity cost of land variable in the 
ERS dataset, we identified crop-specific land costs in the U.S. and further tailored these 
estimates to each county as described in section 4.2. In Canada, we utilized the land 
rental rates provided in the budget, which were different for each Prairie Soil type. 

ERS_region_name profitability_scenario 
total_cost 
(USD/ac) 

price_received 
(USD/bu) 

Heartland high 557 4.1 
Heartland low 630 2.7 
Heartland medium 594 3.4 

Northern Great Plains high 452 4.1 
Northern Great Plains low 505 2.8 
Northern Great Plains medium 479 3.4 

Prairie Gateway high 510 4.1 
Prairie Gateway low 567 2.8 
Prairie Gateway medium 539 3.4 

https://cdnsciencepub.com/doi/10.1139/cjps-2017-0292
https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj2016.01.0005
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Insurance payments: While insurance payment vary by geography, crop and farmer risk 
appetite, we set a basic payment calculated using a five-year rolling yield mean, triggered 
at 85% of the five-year mean. In other words, the insurance payment equates to adding the 
difference in bushels between modeled and the 5-year average yields, when yields fall 
below 85%. This approach allowed us to add a proxy to the Yield Protection product 
offered by USDA’s Risk Management Agency. We applied this payment for all farm types, 
crops, profitability and risk scenarios in both countries. 

Off-farm income: Off-farm income, including revenue from jobs off the farm, was not 
included in the customers’ revenue. While off-farm income and other government 
payments are critical farm economic components, estimating baseline values that could 
be incorporated was outside of the scope of the study. Hence, all changes in revenue are 
solely due to changes in crop sales and insurance payments, if triggered.  

Total debt and interest rates: For simplicity, we assumed total debt remained constant, 
and that interest rates remained stable. Rates in Canada were set at 6.25%,  and those in 
the US at 6.75%.  

Changes in assets: We assume that changes in total assets are solely driven by changes 
in net income. In years with negative net income, total assets are assumed to decrease 
accordingly. 

 

4.5 Farm financial modeling approach.  

With set typical costs of production, prices received and farm financial metrics, and 
defined profitability and risk scenarios, we calculate farm financial performance over time 
based on future climate-driven yield changes. Using the baseline data for 2023, we 
perform the following operations sequentially for each geography × farm size × crop × yield 
scenario × profitability scenario (only a portion of these scenarios are shown in the web 
tool while the others are included in the full dataset): 

1) Calculate revenue per acre, by multiplying the prices received ($/bu) by the 
modeled yield (bu/ac). Revenue was calculated with and without an estimated 
insurance payment.  

2) Operating income per acre was calculated by subtracting total costs of production 
and land rental cost per acre from the revenue per acre calculated in step 1. 

3) Net income per acre was calculated by subtracting interest payments on debt from 
operating income. Interest payments per acre were estimated by multiplying the 
total debt by the prevailing interest rate and then dividing by the farm size. Net 
income per farm was then calculated by summing the net income per acre for each 
crop, weighted by its respective acreage on the farm. 

https://old.rma.usda.gov/Policy-and-Procedure/Insurance-Plans/Yield-Protection-II
https://www.fcc-fac.ca/en/knowledge/knowledge/economics/fixed-vs-variable-loan
https://www.fcsamerica.com/resources/calculators/loan-payment-calculator
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4) Total assets were then calculated each year from 2024, using the prior year’s total 
assets plus the current year’s net income (which are often negative). 

5) The debt-to-asset ratio was then calculated by dividing the total debt by the total 
assets, assuming that the debt level remains constant over the projection period. 

 

Contact us with your questions: 

Vincent Gauthier 

Senior Manager, Climate-smart agriculture, Environmental Defense Fund 

vgauthier@edf.org 

 

https://www.ers.usda.gov/data-products/charts-of-note/chart-detail?chartId=99306
mailto:vgauthier@edf.org

